Below you will find a list of articles, chapters and proceedings ordered chronologically.
This page is currently under constructions and some articles are not linked yet. If you have any questions don't hesitate to contact me.
2021
-
Wulff D.U., De Deyne, S., Aeschbach, S., Mata, R. (2021). Using Network Science to Understand the Aging Lexicon: Linking Individuals' Experience, Semantic Networks, and Cognitive Performance. Topics in Cognitive Science
- Haslam, N., Tse, S.Y.J., De Deyne, S. (2021). Concept Creep and Psychiatrization,Frontiers in Sociology
-
Wulff, D., Aeschbach, S., De Deyne,S. & Mata R. (2021). A data set linking large-scale, individual semantic networks and cognitive performance. Journal of Open Psychology Data. (accepted).
-
Vankrunkelsven, H., Vankelecom, L., Storms, G., De Deyne, S., & Voorspoels, W. (2021). Guessing Words. In G.
Kristiansen, K. Franco, S. De Pascale, L. Rosseel & W. Zhang (Ed.), Cognitive Sociolinguistics Revisited (pp. 572-583). Berlin, Boston: De Gruyter Mouton.
-
Levy, O., Kenett, Y. N., Oxenberg, O., Castro, N., De Deyne, S., Vitevitch, M. S., & Havlin, S. (2021).
Unveiling the nature of interaction between semantics and phonology in lexical access based on multilayer networks. Scientific Reports, 11(1), 1-14.
-
De Deyne, S., Navarro, D.J., Collell, G. and Perfors, A. (2021), Visual and Affective Multimodal Models of Word Meaning in Language and Mind. Cognitive Science, 45: e12922. https://doi.org/10.1111/cogs.12922. [Triad data for concrete and abstract words].
2020
- De Deyne, S., Cabana, A., Li, B., Cai, Q., McKague, M. (2020). A Cross-linguistic Study into the Contribution of Affective Connotation in the Lexico-semantic Representation of Concrete and Abstract Concepts. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Conference of the Cognitive Science Society (pp. 2776-2782). Austin, TX: Cognitive Science Society.
- Stella, M., Restocchi, V., & De Deyne, S. (2020). #lockdown: Network-Enhanced Emotional Profiling in the Time of COVID-19. Big Data and Cognitive Computing, 4, 14, http://dx.doi.org/10.3390/bdcc4020014
- Meersman, K., Bruffaerts, R., Jamoulle, T., Liuzzi, A.G., De Deyne, S., Storms, G., Dupont, P., Vandenberghe, R. (2020). Representation of associative and affective semantic similarity of abstract words in the lateral temporal perisylvian language regions NeuroImage, 217, 116892, https://doi.org/10.1016/j.neuroimage.2020.116892
2019
- Verheyen, S., De Deyne, S., Linsen, S. & Storms, G. (2019). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, https://doi.org/10.3758/s13428-019-01303-4
-
Buchanan, E.M., De Deyne, S., Montefinese, M. (2019). A practical primer on processing semantic property norm data. Cognitive Processing, 1-13.
-
De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987-1006, DOI 10.3758/s13428-018-1115-7.
Psychonomics Best Article Award
- Bruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., & Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: advances made by the introduction of models of semantics in neuroimaging. Neuroscience & Biobehavioral Reviews.
- Wulff, D. U., De Deyne, S., Jones, M. N., Mata, R., & Aging Lexicon Consortium. (2019). New Perspectives on the Aging Lexicon. Trends in Cognitive Sciences.
- Liuzzi, A.G., Dupont, P., Peeters, R., Bruffaerts, R., De Deyne, S., Storms, G., Vandenberghe, R. (2019). Left perirhinal cortex codes for semantic similarity between written words defined from cued word association. NeuroImage, 191,127-13
2018
- De Deyne, S., Navarro, D., & Perfors, A. (2018). Learning word meaning with little means: An investigation into the inferential capacity of paradigmatic information. Proceedings of the 35rd Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
- Vankrunkelsven, H., Verheyen, S., Storms, G., & De Deyne, S. (2018). Predicting Lexical Norms: A Comparison between a Word Association Model and Text-Based Word Co-occurrence Models. Journal of Cognition, 1(1), 45. DOI: http://doi.org/10.5334/joc.50
2017
- De Deyne, S., Kenett, Y.N., Anaki, D., Faust, M., and Navarro D.J. (2017). Large-scale network representation. Large-scale network representations of semantics in the mental lexicon. In M.N. Jones (Ed.) Big Data in Cognitive Science: From Methods to Insights.
- De Deyne. S., Perfors, A., & Navarro, D.J. (2017). Predicting human similarity judgments with distributional models: The value of word associations. 26th International Joint Conference on Artificial Intelligence (pp 4806-4810), IJCAI 2017, Melbourne; Australia. (Invited abridged version of De Deyne, Perfors & Navarro, COLING 2016). DOI https://doi.org/10.24963/ijcai.2017/671
-
Neyens, V., Bruffaerts, R., Liuzzi, A. G., Kalfas, I., Peeters, R., Keuleers, E., Vogels, R., De Deyne, S., Dupont, P., Storms, G. & Vandenberghe, R. (2017). Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence. Frontiers in Human Neuroscience, 11, 402.
-
Dubossarsky, H., De Deyne, S., & Hills, T. (2017). Quantifying the Structure of Free Association Networks Across the Life Span. Developmental Psychology, 53, 1560 - 1570. DOI 10.1037/dev0000347
-
Elvevåg, B., Foltz, P., Rosenstein, M. Ferrer i Cancho, R., De Deyne S., Mizraji, E., Cohen, A. (2017). Thoughts about Disordered Thinking: Measuring and Quantifying the Laws of Order and Disorder. Schizophrenia Bulletin, 43, 509 - 513.
-
Liuzzi, A.G., Bruffaerts,R., Peeters R., Adamczuk, K., Keuleers E., De Deyne, S., Storms, G., Dupont, P. (2017) Cross-modal representation of spoken and written word meaning in left pars triangularis. NeuroImage, 150, 292 - 307.
2016
- De Deyne, S., Perfors, A., Navarro, D. (2016). Predicting human similarity judgments with distributional models: The value of word associations. Proceeding of the Computational Linguistics Conference (COLING), Osaka, Japan.
COLING Best Article Award
- De Deyne, S., Navarro, D., Perfors, A., Storms, G. (2016). Structure at every scale: A semantic network account of the similarities between unrelated concepts. Journal of Experimental Psychology. General, 145, 1228-1254.
- De Deyne, S., Verheyen, S., Storms, G. (2016). Structure and organization of the mental lexicon: A network approach derived from syntactic dependency relations and word associations. In: Mehler A., Lücking A., Banish S., Blanchard P., Frank-Job B. (Eds.), bookseries: Understanding Complex Systems, Towards a theoretical framework for analyzing complex linguistic networks. Berlin, Germany: Springer, 47-79.
- van Vliet, M., Chumerin, N., De Deyne, S., Wiersema, J., Fias, W., Storms, G., Van Hulle, M. (2016). Single-trial ERP component analysis using a spatio-temporal LCMV. IEEE Transactions on Biomedical Engineering, 63 (1), 55-66.
- Van Rensbergen, B., Storms, G., De Deyne, S. (2016).Examining assortativity in the mental lexicon: Evidence from word association data.Psychonomic Bulletin & Review, 22 (6), 1717-1724.
2015
- De Deyne, S., Storms, G. (2015). Word associations. In: Taylor J. (Eds.), The Oxford handbook of the word, Chapt. 26. New York, NY: Oxford University Press, 465-480.
- De Deyne, S., Verheyen, S., Storms, G. (2015). The role of corpus-size and syntax in deriving
lexico-semantic representations for a wide range of concepts. The Quarterly Journal of Experimental Psychology, (68), 1643-1664.
- Heyman, T., Van Rensbergen, B., Storms, G., Hutchison, K., De Deyne, S. (2015).The influence of working memory load on semantic priming.Journal of Experimental Psychology Learning, Memory and Cognition, 41 (3), 911-920.
- Heyman, T., De Deyne, S., Hutchison, K., Storms, G. (2015).Using the speeded word fragment completion task to examine semantic priming. Behavior Research Methods, 47 (2), 580-606.
- Liuzzi, A., Bruffaerts, R., Dupont, P., Adamczuk, K., Peeters, R., De Deyne, S., Storms, G., Vandenberghe, R. (2015).Left perirhinal cortex codes for similarity in meaning between written words: Comparison with auditory word input. Neuropsychologia, 76, art.nr. doi: 10.1016/j.neuropsychologia.2015.03.016., 4-16.
- Van Rensbergen, B., De Deyne, S., Storms, G. (2015).Estimating affective word covariates using word association data.Behavior Research Methods, 48(4), 1644-1652.
- Vankrunkelsven, H., Verheyen, S., De Deyne, S., Storms, G. (2015). Predicting lexical norms using a word association corpus. In Noelle, D. (Ed.), Dale, R. (Ed.), Warlaumont, A. (Ed.), Yoshimi, J. (Ed.), Matlock, T. (Ed.), Jennings, C. (Ed.), Maglio, P. (Ed.), Proceedings of the 37th Annual Conference of the Cognitive Science Society. Pasadena, CA, USA, 23-25 July 2015 (pp. 2463-2468). Austin, TX: Cognitive Science Society.
- De Deyne, S., Verheyen, S., Perfors, A., Navarro, D. (2015). Evidence for widespread thematic structure in the mental lexicon. In Dale, R. (Ed.), Jennings, C. (Ed.), Maglio, P. (Ed.), Matlock, T. (Ed.), Noelle, D. (Ed.), Warlaumont, A. (Ed.), Yoshimi, J. (Ed.), Proceedings of the 37th Annual Conference of the Cognitive Science Society. Annual Conference of the Cognitive Science Society. Pasadena, CA, USA, 23-25 July 2015 (pp. 518-523). Austin, TX: Cognitive Science Society.
2014
- Bruffaerts, R., De Weer, A., De Grauwe, S., Thys, M., Dries, E., Thijs, V., Sunaert, S., Vandenbulcke, M., De Deyne, S., Storms, G., Vandenberghe, R. (2014).Noun and knowledge retrieval for biological and non-biological entities following right occipitotemporal lesions.Neuropsychologia, 62, art.nr. 10.1016/j.neuropsychologia.2014.07.021, 163-74.
- Brysbaert, M., Stevens, M., De Deyne, S., Voorspoels, W., Storms, G. (2014).Norms of age of acquisition and concreteness for 30,000 Dutch words. Acta Psychologica, 150, 80-84.
- De Deyne, S., Voorspoels, W., Verheyen, S., Navarro, D., Storms, G. (2014).Accounting for graded structure in adjective categories with valence-based opposition relationships. Language Cognition and Neuroscience, 29 (5), 568-583.
2013
- Boiger, M., De Deyne, S., Mesquita, B. (2013). Emotions in “the world”: Cultural practices, products, and meanings of anger and shame in two individualist cultures. Frontiers in Psychology, 4, art.nr. 867.
- Bruffaerts, R., Dupont, P., Peeters, R., De Deyne, S., Storms, G., Vandenberghe, R. (2013). Similarity of fMRI activity patterns in left perirhinal cortex reflects similarity between words. Journal of Neuroscience, 33 (47), 18597-18607.
- Bruffaerts, R., Dupont, P., De Grauwe, S., Peeters, R., De Deyne, S., Storms, G., Vandenberghe, R. (2013). Right fusiform response patterns reflect visual object identity rather than semantic similarity. NeuroImage, 83, 87-97.
- De Deyne, S., Storms, G. (2013). Themanummer taal(ontwikkelings)stoornissen: Het mentale lexicon als een semantisch web. Logopedie, 26, 3-12.
- De Deyne, S., Navarro, D., Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single word associations. Behavior Research Methods, 45 (2), 480-498.
- Heyman, T., De Deyne, S., Storms, G. (2013). Using the letter decision task to examine semantic priming. In Knauff, M. (Ed.), Pauen, M. (Ed.), Sebanz, N. (Ed.), Wachsmuth, I. (Ed.), Cooperative Minds: Social Interaction and Group Dynamics. Proceedings of the 35th Annual Conference of the Cognitive Science Society. Annual Conference of the Cognitive Science Society. Berlin, Germany, 31 July - 3 August 2013 (pp. 2542-2547). Austin, TX: Cognitive Science Society.
Earlier
- De Deyne, S., Voorspoels, W., Verheyen, S., Navarro, D., Storms, G. (2011). Graded structure in adjective categories. In Carlson, L. (Ed.), Hölscher, C. (Ed.), Shipley, T. (Ed.), Expanding the Space of Cognitive Science. Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Annual Conference of the Cognitive Science Society. Boston, MA, USA, 20-23 July 2011 (pp. 249-254). Auxtin, TX: Cognitive Science Society.
- Verheyen, S., De Deyne, S., Dry, M., Storms, G. (2011). Uncovering contrast categories in categorization with a probabilistic threshold model. Journal of Experimental Psychology. Learning, Memory and Cognition, 37 (6), 1515-1531.
- Verheyen, S., Stukken, L., De Deyne, S., Dry, M., Storms, G. (2011). The generalized polymorphous concept account of graded structure in abstract categories. Memory & Cognition, 39 (6), 1117-1132.
- De Deyne, S., Peirsman, Y., Storms, G. (2009). Sources of semantic similarity. In Taatgen, N. (Ed.), Van Rijn, H. (Ed.), Proceedings of the 31st Annual Conference of the Cognitive Science Society. Annual Conference of the Cognitive Science Society. Amsterdam, 29 July - 1 August (pp. 1834-1839). Austin, TX: Cognitive Science Society.
- Peirsman, Y., De Deyne, S., Heylen, K., Geeraerts, D. (2008). The Construction and Evaluation of Word Space Models. Proceedings of the Language Resources and Evaluation Conference (LREC). Language Resources and Evaluation Conference (LREC). Marrakech, Morocco, 26 May - 1 June 2008 (pp. 7p). Paris: ELRA.
- De Deyne, S., Storms, G. (2008).Word associations: Norms for 1,424 Dutch words in a continuous task. Behavior Research Methods, 40 (1), 198-205.
- De Deyne, S., Storms, G. (2008). Word associations: Network and semantic properties. Behavior Research Methods, 40 (1), 213-231.
- De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, M., Voorspoels, W., Storms, G. (2008). Exemplar by feature applicability matrices and other Dutch normative data for semantic concepts. Behavior Research Methods, 40 (4), 1030-1048.
- De Deyne, S., Storms, G. (2007). Age-of-acquisition differences in young and older adults affect latencies in lexical decision and semantic categorization. Acta Psychologica, 124 (3), 274-295.
- Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., Storms, G. (2004). Dutch norm data for 13 semantic categories and 338 exemplars. Behavior Research Methods, Instruments & Computers, 36 (3), 506-515.
- Brysbaert, M., Van Wijnendaele, I., De Deyne, S. (2000). Age-of-acquisition effects in semantic processing tasks. Acta Psychologica, 104 (2), 215-226.